List of named differential equations

Differential equations play a prominent role in many scientific areas: mathematics, physics, engineering, chemistry, biology, medicine, economics, etc. This list presents differential equations that have received specific names, area by area.

Mathematics

edit

Algebraic geometry

edit

Complex analysis

edit

Differential geometry

edit

Dynamical systems and Chaos theory

edit

Mathematical physics

edit

Ordinary Differential Equations (ODEs)

edit

Riemannian geometry

edit

Physics

edit

Astrophysics

edit

Classical mechanics

edit

Electromagnetism

edit

Fluid dynamics and hydrology

edit

General relativity

edit

Materials science

edit

Nuclear physics

edit

Plasma physics

edit

Quantum mechanics and quantum field theory

edit

Thermodynamics and statistical mechanics

edit

Waves (mechanical or electromagnetic)

edit

Engineering

edit

Electrical and Electronic Engineering

edit

Game theory

edit

Mechanical engineering

edit

Nuclear engineering

edit

Optimal control

edit

Orbital mechanics

edit

Signal processing

edit

Transportation engineering

edit

Chemistry

edit

Biology and medicine

edit

Population dynamics

edit

Economics and finance

edit

Linguistics

edit

Military strategy

edit

References

edit
  1. ^ Zebiak, Stephen E.; Cane, Mark A. (1987). "A Model El Niño–Southern Oscillation". Monthly Weather Review. 115 (10): 2262–2278. doi:10.1175/1520-0493(1987)115<2262:AMENO>2.0.CO;2. ISSN 1520-0493.
  2. ^ Griffiths, David J. (2004), Introduction to Quantum Mechanics (2nd ed.), Prentice Hall, pp. 1–2, ISBN 0-13-111892-7
  3. ^ Ragheb, M. (2017). "Neutron Diffusion Theory" (PDF).
  4. ^ Choi, Youngsoo (2011). "PDE-constrained Optimization and Beyond" (PDF).
  5. ^ Heinkenschloss, Matthias (2008). "PDE Constrained Optimization" (PDF). SIAM Conference on Optimization.
  6. ^ Rudin, Leonid I.; Osher, Stanley; Fatemi, Emad (1992). "Nonlinear total variation based noise removal algorithms". Physica D. 60 (1–4): 259–268. Bibcode:1992PhyD...60..259R. CiteSeerX 10.1.1.117.1675. doi:10.1016/0167-2789(92)90242-F.
  7. ^ Murray, James D. (2002). Mathematical Biology I: An Introduction (PDF). Interdisciplinary Applied Mathematics. Vol. 17 (3rd ed.). New York: Springer. pp. 395–417. doi:10.1007/b98868. ISBN 978-0-387-95223-9.
  8. ^ Fernández-Villaverde, Jesús (2010). "The econometrics of DSGE models" (PDF). SERIEs. 1 (1–2): 3–49. doi:10.1007/s13209-009-0014-7. S2CID 8631466.
  9. ^ Piazzesi, Monika (2010). "Affine Term Structure Models" (PDF).
  10. ^ Cardaliaguet, Pierre (2013). "Notes on Mean Field Games (from P.-L. Lions' lectures at Collège de France)" (PDF).