File:Cardan Gear linear movement packed vertical.gif

Cardan_Gear_linear_movement_packed_vertical.gif(270 × 410 pixels, file size: 1.85 MB, MIME type: image/gif, looped, 452 frames, 18 s)

Summary

Description
English: The "Cardan Straight Line Mechanism" (or "Epicyloid Straight-Line Linkage") transforms rotation into a linear movement. The condition is that the number to teeth of the stationary sun (yellow, here 32 teeth) gear is twice the number of teeth of the outer planet (red, here 16 teeth). The lever on the outer planet is as long as the distance between the centers of the sun and the outer planet. The inner planet (blue) is an idler gear, the number of its teeth is irrelevant for the function.
Date
Source

Own work; Based on:

Author Jahobr
Other versions
GIF development
InfoField
 
This diagram was created with MATLAB by Jahobr.
Source code
InfoField

MATLAB code

function Cardan_Gear_linear_movement()
% Source code for drawing Cardan Gears that produces linear movement.
% The shape of the gears is not precise, it creates a decent GIF and a SVG.
%
% 2018-05-28 Jahobr

[pathstr,fname] = fileparts(which(mfilename)); % save files under the same name and at file location
 
modul = 16;
 
carrierCol   = round([0.1 0.7 0.1].*255)./255; % green
sunCol       = round([0.95 0.65 0  ].*255)./255; % yellow (obviously)
palnetColOut = round([1 0.2 0.2].*255)./255; % red
palnetColIn  = round([0.2 0.2 1  ].*255)./255; % blue   (obviously)
lineCol      = round([0.6 0.2 0.8].*255)./255; % violet
 
for currentCase = 1:2;

    figHandle = figure(17674755); clf
    set(figHandle, 'Units','pixel');
    set(figHandle, 'Color',[1 1 1]);
    set(figHandle, 'GraphicsSmoothing','on') % requires at least version 2014b

    nFrames = 452;

    switch currentCase
        case 1 % Stationary_Sun
            saveName = [fname '_packed'];
            teethSun  = 32; % must be divisible by 2
            teethPlanIn = 12; % Idler, tooth number does not matter
            scaleReduction = 3; % reduction for nice antialiasing
            ySize = 270; % pixel
        case 2 % Stationary_Sun
            saveName = [fname '_linedUp'];
            teethSun  = 32; % must be divisible by 2
            teethPlanIn = 20; % Idler, tooth number does not matter
            scaleReduction = 3; % reduction for nice antialiasing
            ySize = 250; % pixel
    end

    teethPlanOut = teethSun/2; % necessary condition

    radiusSun  = modul.*teethSun./2; % effective radius
    radiusPlanIn = modul.*teethPlanIn./2; % effective radius
    radiusPlanOut = modul.*teethPlanOut./2; % effective radius

    distInOut = radiusPlanIn+radiusPlanOut; % distance of centers
    distSunIn = radiusSun+radiusPlanIn; % distance of centers

    angleCarrier = -linspace(0,pi*2,nFrames+1); % define gear position in frames
    angleCarrier = angleCarrier(1:end-1); % remove last frame, it would be double
    angleCarrier = circshift(angleCarrier,[0,round(nFrames/9)]);

    anglePlanOut = -angleCarrier; % gear ratio
    anglePlanIn = angleCarrier.*( teethSun/teethPlanIn+1 ); % gear ratio
    angleSun = zeros(size(angleCarrier));

    switch currentCase
        case 1 % Stationary_Sun
            distSunOut = radiusSun+radiusPlanOut+modul*2.5;
            anglePlanOut = anglePlanOut + (pi/teethPlanOut); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT
            anglePlanIn = anglePlanIn + (pi/teethPlanIn)*1.3; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT
            angleSun = angleSun+(pi/teethSun)*1.5 ; % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT

        case 2 % Stationary_Sun
            distSunOut = radiusSun+radiusPlanIn*2+radiusPlanOut;
            anglePlanOut = anglePlanOut + (pi/teethPlanOut); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT
            % anglePlanIn = anglePlanIn + (pi/teethPlanIn); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT
            angleSun = angleSun+(pi/teethSun); % ALLIGNMENT; THIS MAY NEED MANUAL ADJUSTMENT
    end
    angPlanInOffset = acos((distInOut^2-distSunIn^2-distSunOut^2) / (-2*distSunIn*distSunOut)); % triangle calculation

    xlimValues = [-1.07 1.07]*(distSunOut*2);
    ylimValues = [-1.07 1.07]*(distSunOut+radiusPlanOut);

    xRange = xlimValues(2)-xlimValues(1);
    yRange = ylimValues(2)-ylimValues(1);

    xSize = round(ySize/10/yRange*xRange)*10; % pixel
 
    set(figHandle, 'position',[1 1 xSize*scaleReduction ySize*scaleReduction]); % big start image for antialiasing later [x y width height]
    axesHandle = axes; hold(axesHandle,'on');
    set(axesHandle,'position',[0 0 1 1]); % stretch axis as big as figure, [x y width height]
    axis equal
    axis off % invisible axes (no ticks)
    xlim(xlimValues); ylim(ylimValues);
    drawnow;

    reducedRGBimage = uint8(ones(ySize,xSize,3,nFrames)); % allocate
 
    x_y_Crank = [-modul*1.5 -modul*1.5 distSunOut+modul distSunOut+modul;... % x crank outline
                 -modul*1.5  modul*1.5            modul           -modul];   % y

    for iFrame = 1:nFrames

        cla(axesHandle) % fresh frame
 
        %% sun
        drawCogWheel(axesHandle,[0 0],teethSun ,modul,sunCol,angleSun(iFrame));

        %% planets
        [Xin,Yin] = pol2cart(angPlanInOffset+angleCarrier(iFrame) ,distSunIn);
        drawCogWheel(axesHandle,[Xin,Yin],teethPlanIn,modul,palnetColIn,anglePlanIn(iFrame)); % inner planetary gear (Idler)

        [Xout,Yout] = pol2cart(angleCarrier(iFrame) ,distSunOut);
        drawCogWheel(axesHandle,[Xout,Yout],teethPlanOut,modul,palnetColOut,anglePlanOut(iFrame)); % outer planetary gear

        %% carrier
        carrierPoints =0:0.1:2*pi-angleCarrier(iFrame); % circle points
        r = min(radiusPlanIn,radiusPlanOut)*0.5; % radius of carrier frame
        xSunCar =  cos(carrierPoints)*r;         ySunCar =  sin(carrierPoints)*r; % points on left circle of carrier; (start on the right; counterClock)
        xOutCar = -cos(carrierPoints)*r+Xout;    yOutCar = -sin(carrierPoints)*r+Yout; % points on right circle of carrier; (start on the left; counterClock)
        xInCar  =  sin(carrierPoints)*r+Xin;     yInCar  = -cos(carrierPoints)*r+Yin; % points on top circle of carrier; (start on the bottom; counterClock)
        xCarrier = [xSunCar xOutCar xInCar];     yCarrier = [ySunCar yOutCar yInCar]; % assemble carrier
        valPoint = convhull(xCarrier, yCarrier); % Convex hull
        xCarrier = xCarrier(valPoint);           yCarrier = yCarrier(valPoint); % remove concave carrier points
        plot(xCarrier,yCarrier,'color',[0 0 0],'LineWidth',13) % black outline
        plot(xCarrier,yCarrier,'color',carrierCol,'LineWidth',10) % carrierCol "filling"

        circlePatch(0,0,r*1.3,carrierCol,2); % sun carrier
        circlePatch(0,0,r*0.8,sunCol,2);     % sun axle

        circlePatch(Xin,Yin,r*1.3,carrierCol,2); % inner planet carrier
        circlePatch(Xin,Yin,r*0.8,palnetColIn,2);    % inner planet axle

        circlePatch(Xout,Yout,r*1.3,carrierCol,2); % outer planet carrier

        rotM = [cos(-angleCarrier(iFrame)) -sin(-angleCarrier(iFrame)); -sin(+angleCarrier(iFrame)) cos(-angleCarrier(iFrame))]; % rotation matrix
        vecTemp = rotM*x_y_Crank; % rotate crank
        patch(vecTemp(1,:)+Xout,vecTemp(2,:)+Yout,palnetColOut,'EdgeColor',[0 0 0],'LineWidth',2) % raw the crank trapezoid

        circlePatch(Xout,Yout,r*0.8,palnetColOut,2); % outer planet axle

        plot([-2 2]*distSunOut,[0 0],'Linewidth',8,'Color',lineCol); % plot the line
        circlePatch(cos(angleCarrier(iFrame))*2*distSunOut,0,modul*2,palnetColOut,2); % outer planet carrier
        circlePatch(cos(angleCarrier(iFrame))*2*distSunOut,0,modul*1.2,lineCol,2); % outer planet carrier

        %% save animation
        f = getframe(figHandle);
        reducedRGBimage(:,:,:,iFrame) = imReduceSize(f.cdata,scaleReduction); % the size reduction: adds antialiasing

        if iFrame == 1 % SVG
            if ~isempty(which('plot2svg'))
                plot2svg(fullfile(pathstr, [saveName '_horizontal.svg']),figHandle) % by Juerg Schwizer
            else
                disp('plot2svg.m not available; see http://www.zhinst.com/blogs/schwizer/');
            end
        end
    end

    map = createImMap(reducedRGBimage,16,[0 0 0;1 1 1;carrierCol;sunCol;palnetColOut;palnetColIn;lineCol]); % colormap

    im = uint8(ones(ySize,xSize,1,nFrames)); % allocate
    for iFrame = 1:nFrames
        im(:,:,1,iFrame) = rgb2ind(reducedRGBimage(:,:,:,iFrame),map,'nodither'); % rgb to colormap image
    end

    imwrite(im,map,fullfile(pathstr, [saveName '_horizontal.gif']),'DelayTime',1/25,'LoopCount',inf) % save gif
    disp([saveName '_horizontal.gif  has ' num2str(numel(im)/10^6 ,4) ' Megapixels']) % Category:Animated GIF files exceeding the 50 MP limit
    imwrite(fliplr(permute(im,[2 1 3 4])),map,fullfile(pathstr, [saveName '_vertical.gif']),'DelayTime',1/25,'LoopCount',inf) % save gif
    disp([saveName '_vertical.gif  has '   num2str(numel(im)/10^6 ,4) ' Megapixels']) % Category:Animated GIF files exceeding the 50 MP limit
end

function drawCogWheel(axesHandle,center,toothNumber,modul,colFilling,startOffset)
% DRAWTOOTHEDWHEEL - draw a simple Toothed Wheel
%
%  Input:
%    axesHandle:
%    center:       [x y]
%    toothNumber:  scalar
%    modul:        scalar tooth "size"
%    colFilling:   color of filling [r g b]
%    startOffset:  start rotation (scalar)[rad]
 
effectiveRadius = modul*toothNumber/2; % effective effectiveRadius
 
outsideRadius =     effectiveRadius+1*  modul; %                +---+             +---+
upperRisingRadius = effectiveRadius+0.5*modul; %               /     \           /     \
% effective Radius                             %              /       \         /       \
lowerRisingRadius = effectiveRadius-0.5*modul; %             I I       I I
rootRadius =        effectiveRadius-1.1*modul; %     + - - - +         + - - - +         +
 
angleBetweenTeeth = 2*pi/toothNumber; % angle between 2 teeth
 
angleOffPoints = (0:angleBetweenTeeth/16:(2*pi));
 
angleOffPoints = angleOffPoints+startOffset; % apply rotation offset
 
angleOffPoints( 7:16:end) = angleOffPoints( 7:16:end) + 1/toothNumber^1.2; % hack to create smaller tooth tip
angleOffPoints(11:16:end) = angleOffPoints(11:16:end) - 1/toothNumber^1.2; % hack to create smaller tooth tip
 
angleOffPoints( 8:16:end) = (angleOffPoints( 7:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly
angleOffPoints(10:16:end) = (angleOffPoints(11:16:end) + angleOffPoints(9:16:end))/2; % shift the neighbouring tip point in accordingly
 
angleOffPoints( 6:16:end) = angleOffPoints( 6:16:end) + 1/toothNumber^1.7; % hack to create slender tooth
angleOffPoints(12:16:end) = angleOffPoints(12:16:end) - 1/toothNumber^1.7; % hack to create slender tooth
 
radiusOffPoints = angleOffPoints; % allocate with correct site
 
radiusOffPoints(1:16:end)  = rootRadius;        % center bottom I
radiusOffPoints(2:16:end)  = rootRadius;        % left bottom I
radiusOffPoints(3:16:end)  = rootRadius;        % left bottom corner    +
radiusOffPoints(4:16:end)  = lowerRisingRadius; % lower rising bottom      \
radiusOffPoints(5:16:end)  = effectiveRadius;   % rising edge                 \
radiusOffPoints(6:16:end)  = upperRisingRadius; % upper rising edge              \
radiusOffPoints(7:16:end)  = outsideRadius;     % right top corner                 +
radiusOffPoints(8:16:end)  = outsideRadius;     % right top I
radiusOffPoints(9:16:end)  = outsideRadius;     % center top I
radiusOffPoints(10:16:end) = outsideRadius;     % left top I
radiusOffPoints(11:16:end) = outsideRadius;     % left top corner                  +
radiusOffPoints(12:16:end) = upperRisingRadius; % upper falling edge             /
radiusOffPoints(13:16:end) = effectiveRadius;   % falling edge                /
radiusOffPoints(14:16:end) = lowerRisingRadius; % lower falling edge       /
radiusOffPoints(15:16:end) = rootRadius;        % right bottom corner   +
radiusOffPoints(16:16:end) = rootRadius;        % right bottom I
 
[X,Y] = pol2cart(angleOffPoints,radiusOffPoints);
X = X+center(1); % center offset
Y = Y+center(2); % center offset
patch(X,Y,colFilling,'EdgeColor',[0 0 0],'LineWidth',2)
% plot(axesHandle,X,Y,'-x','linewidth',2,'color',[0 0 0]);
 
% %% effective Radius
% [X,Y] = pol2cart(angleOffPoints,effectiveRadius);
% X = X+center(1); % center offset
% Y = Y+center(2); % center offset
% plot(axesHandle,X,Y,'-.','color',[0 0 0]);

function circlePatch(x,y,r,col,linW)
% x coordinates of the center
% y coordinates of the center
% r is the radius of the circle
% col patch color
% linW LineWidth
angleOffPoints = linspace(0,2.001*pi,200);
xc = x + r*cos(angleOffPoints);
yc = y + r*sin(angleOffPoints);
patch(xc,yc,col,'EdgeColor',[0 0 0],'LineWidth',linW);

function im = imReduceSize(im,redSize)
% Input:
%  im:      image, [imRows x imColumns x nChannel x nStack] (unit8)
%                      imRows, imColumns: must be divisible by redSize
%                      nChannel: usually 3 (RGB) or 1 (grey)
%                      nStack:   number of stacked images
%                                usually 1; >1 for animations
%  redSize: 2 = half the size (quarter of pixels)
%           3 = third the size (ninth of pixels)
%           ... and so on
% Output:
%  imNew:  unit8([imRows/redSize x imColumns/redSize x nChannel x nStack])
%
% an alternative is : imNew = imresize(im,1/reduceImage,'bilinear');
%        BUT 'bicubic' & 'bilinear'  produces fuzzy lines
%        IMHO this function produces nicer results as "imresize"
 
[nRow,nCol,nChannel,nStack] = size(im);

if redSize==1;  return;  end % nothing to do
if redSize~=round(abs(redSize));             error('"redSize" must be a positive integer');  end
if rem(nRow,redSize)~=0;     error('number of pixel-rows must be a multiple of "redSize"');  end
if rem(nCol,redSize)~=0;  error('number of pixel-columns must be a multiple of "redSize"');  end

nRowNew = nRow/redSize;
nColNew = nCol/redSize;

im = double(im).^2; % brightness rescaling from "linear to the human eye" to the "physics domain"; see youtube: /watch?v=LKnqECcg6Gw
im = reshape(im, nRow, redSize, nColNew*nChannel*nStack); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nRow, 1, nColNew*nChannel]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image. Size of result: [nColNew*nChannel, nRow, 1]
im = reshape(im, nColNew*nChannel*nStack, redSize, nRowNew); % packets of width redSize, as columns next to each other
im = sum(im,2); % sum in all rows. Size of result: [nColNew*nChannel, 1, nRowNew]
im = permute(im, [3,1,2,4]); % move singleton-dimension-2 to dimension-3; transpose image back. Size of result: [nRowNew, nColNew*nChannel, 1]
im = reshape(im, nRowNew, nColNew, nChannel, nStack); % putting all channels (rgb) back behind each other in the third dimension
im = uint8(sqrt(im./redSize^2)); % mean; re-normalize brightness: "scale linear to the human eye"; back in uint8

function map = createImMap(imRGB,nCol,startMap)
% createImMap creates a color-map including predefined colors.
% "rgb2ind" creates a map but there is no option to predefine some colors,
%         and it does not handle stacked images.
% Input:
%   imRGB:     image, [imRows x imColumns x 3(RGB) x nStack] (unit8)
%   nCol:      total number of colors the map should have, [integer]
%   startMap:  predefined colors; colormap format, [p x 3] (double)

imRGB = permute(imRGB,[1 2 4 3]); % step1; make unified column-image (handling possible nStack)
imRGBcolumn = reshape(imRGB,[],1,3,1); % step2; make unified column-image

fullMap = double(permute(imRGBcolumn,[1 3 2]))./255; % "column image" to color map 
[fullMap,~,imMapColumn] = unique(fullMap,'rows'); % find all unique colores; create indexed colormap-image
% "cmunique" could be used but is buggy and inconvenient because the output changes between "uint8" and "double"

nColFul = size(fullMap,1);
nColStart = size(startMap,1);
disp(['Number of colors: ' num2str(nColFul) ' (including ' num2str(nColStart) ' self defined)']);

if nCol<=nColStart;  error('Not enough colors');        end
if nCol>nColFul;   warning('More colors than needed');  end

isPreDefCol = false(size(imMapColumn)); % init
 
for iCol = 1:nColStart
    diff = sum(abs(fullMap-repmat(startMap(iCol,:),nColFul,1)),2); % difference between a predefined and all colores
    [mDiff,index] = min(diff); % find matching (or most similar) color
    if mDiff>0.05 % color handling is not precise
        warning(['Predefined color ' num2str(iCol) ' does not appear in image'])
        continue
    end
    isThisPreDefCol = imMapColumn==index; % find all pixel with predefined color
    disp([num2str(sum(isThisPreDefCol(:))) ' pixel have predefined color ' num2str(iCol)]);
    isPreDefCol = or(isPreDefCol,isThisPreDefCol); % combine with overall list
end
[~,mapAdditional] = rgb2ind(imRGBcolumn(~isPreDefCol,:,:),nCol-nColStart,'nodither'); % create map of remaining colors
map = [startMap;mapAdditional];

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

28 May 2018

image/gif

8dc1c035f22d03a276e921ca318f97876384f6de

1,941,381 byte

18.079999999999792 second

410 pixel

270 pixel

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:26, 28 May 2018Thumbnail for version as of 19:26, 28 May 2018270 × 410 (1.85 MB)JahobrUser created page with UploadWizard
The following pages on the English Wikipedia use this file (pages on other projects are not listed):

Global file usage

The following other wikis use this file: