A calcite sea is a sea in which low-magnesium calcite is the primary inorganic marine calcium carbonate precipitate. An aragonite sea is the alternate seawater chemistry in which aragonite and high-magnesium calcite are the primary inorganic carbonate precipitates. The Early Paleozoic and the Middle to Late Mesozoic oceans were predominantly calcite seas, whereas the Middle Paleozoic through the Early Mesozoic and the Cenozoic (including today) are characterized by aragonite seas.[1][2][3][4][5][6]

The alternation of calcite and aragonite seas through geologic time
Jurassic hardground with encrusting oysters and borings

The most significant geological and biological effects of calcite sea conditions include rapid and widespread formation of carbonate hardgrounds,[7][8][9] calcitic ooids,[10][1] calcite cements,[2] and the contemporaneous dissolution of aragonite shells in shallow warm seas.[11][6] Hardgrounds were very common, for example, in the calcite seas of the Ordovician and Jurassic, but virtually absent from the aragonite seas of the Permian.[7]

Fossils of invertebrate organisms found in calcite sea deposits are usually dominated by either thick calcite shells and skeletons,[12][13][14][15] were infaunal and/or had thick periostraca,[16] or had an inner shell of aragonite and an outer shell of calcite.[17] This was apparently because aragonite dissolved quickly on the seafloor and had to be either avoided or protected as a biomineral.[6]

Calcite seas were coincident with times of rapid seafloor spreading and global greenhouse climate conditions.[14] Seafloor spreading centers cycle seawater through hydrothermal vents, reducing the ratio of magnesium to calcium in the seawater through metamorphism of calcium-rich minerals in basalt to magnesium-rich clays.[2][5] This reduction in the Mg/Ca ratio favors the precipitation of calcite over aragonite. Increased seafloor spreading also means increased volcanism and elevated levels of carbon dioxide in the atmosphere and oceans. This may also have an effect on which polymorph of calcium carbonate is precipitated.[5] Further, high calcium concentrations of seawater favor the burial of CaCO3, thereby removing alkalinity from the ocean, lowering seawater pH and reducing its acid/base buffering.[18]

References edit

  1. ^ a b Wilkinson, B.H.; Owen, R.M.; Carroll, A.R. (1985). "Submarine hydrothermal weathering, global eustacy, and carbonate polymorphism in Phanerozoic marine oolites". Journal of Sedimentary Petrology. 55: 171–183. doi:10.1306/212f8657-2b24-11d7-8648000102c1865d.
  2. ^ a b c Wilkinson, B.H.; Given, K.R. (1986). "Secular variation in abiotic marine carbonates: constraints on Phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios". Journal of Geology. 94 (3): 321–333. Bibcode:1986JG.....94..321W. doi:10.1086/629032. S2CID 128840375.
  3. ^ Morse, J.W.; Mackenzie, F.T. (1990). "Geochemistry of sedimentary carbonates". Developments in Sedimentology. 48: 1–707. doi:10.1016/S0070-4571(08)70330-3.
  4. ^ Hardie , Lawrence A (1996). "Secular variation in seawater chemistry: An explanation for the coupled secular variation in the mineralogies of marine limestones and potash evaporites over the past 600 my". Geology. 24 (3). Geological Society of America: 279–283. Bibcode:1996Geo....24..279H. doi:10.1130/0091-7613(1996)024<0279:svisca>2.3.co;2.
  5. ^ a b c Lowenstein, T.K.; Timofeeff, M.N.; Brennan, S.T.; Hardie, L.A.; Demicco, R.V. (2001). "Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions". Science. 294 (5544): 1086–1088. Bibcode:2001Sci...294.1086L. doi:10.1126/science.1064280. PMID 11691988. S2CID 2680231.
  6. ^ a b c Palmer, T.J.; Wilson, M.A. (2004). "Calcite precipitation and dissolution of biogenic aragonite in shallow Ordovician calcite seas". Lethaia. 37 (4): 417–427 [1]. Bibcode:2004Letha..37..417P. doi:10.1080/00241160410002135.
  7. ^ a b Palmer, T.J. (1982). "Cambrian to Cretaceous changes in hardground communities". Lethaia. 15 (4): 309–323. Bibcode:1982Letha..15..309P. doi:10.1111/j.1502-3931.1982.tb01696.x.
  8. ^ Palmer, T.J.; Hudson, J.D.; Wilson, M.A. (1988). "Palaeoecological evidence for early aragonite dissolution in ancient calcite seas". Nature. 335 (6193): 809–810. Bibcode:1988Natur.335..809P. doi:10.1038/335809a0. S2CID 4280692.
  9. ^ Wilson, M.A.; Palmer, T.J. (1992). "Hardgrounds and hardground faunas". University of Wales, Aberystwyth, Institute of Earth Studies Publications. 9: 1–131.
  10. ^ Sandberg, P.A. (1983). "An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy". Nature. 305 (5929): 19–22. Bibcode:1983Natur.305...19S. doi:10.1038/305019a0. S2CID 4368105.
  11. ^ Cherns, L.; Wright, V.P. (2000). "Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian Sea". Geology. 28 (9): 791–794. Bibcode:2000Geo....28..791C. doi:10.1130/0091-7613(2000)28<791:MMAEOL>2.0.CO;2.
  12. ^ Wilkinson, B.H. (1979). "Biomineralization, paleooceanography, and the evolution of calcareous marine organisms". Geology. 7 (11): 524–527. Bibcode:1979Geo.....7..524W. doi:10.1130/0091-7613(1979)7<524:BPATEO>2.0.CO;2.
  13. ^ Stanley, S.M.; Hardie, L.A. (1998). "Secular oscillations in the carbonate mineralogy of reef-building and sediment-producing organisms driven by tectonically forced shifts in seawater chemistry". Palaeogeography, Palaeoclimatology, Palaeoecology. 144 (1–2): 3–19. Bibcode:1998PPP...144....3S. doi:10.1016/S0031-0182(98)00109-6.
  14. ^ a b Stanley, S.M.; Hardie, L.A. (1999). "Hypercalcification; paleontology links plate tectonics and geochemistry to sedimentology". GSA Today. 9: 1–7.
  15. ^ Porter, S.M. (2007). "Seawater chemistry and early carbonate biomineralization". Science. 316 (5829): 1302–1304. Bibcode:2007Sci...316.1302P. doi:10.1126/science.1137284. PMID 17540895. S2CID 27418253.
  16. ^ Pojeta, J. Jr. (1988). "Review of Ordovician pelecypods". U.S. Geological Survey Professional Paper. 1044: 1–46.
  17. ^ Harper, E.M.; Palmer, T.J.; Alphey, J.R. (1997). "Evolutionary response by bivalves to changing Phanerozoic sea-water chemistry". Geological Magazine. 134 (3): 403–407. Bibcode:1997GeoM..134..403H. doi:10.1017/S0016756897007061. S2CID 140646397.
  18. ^ Hain, Mathis P.; Sigman, Daniel M.; Higgins, John A.; Haug, Gerald H. (2015). "The effects of secular calcium and magnesium concentration changes on the thermodynamics of seawater acid/base chemistry: Implications for Eocene and Cretaceous ocean carbon chemistry and buffering" (PDF). Global Biogeochemical Cycles. 29 (5): 517–533. Bibcode:2015GBioC..29..517H. doi:10.1002/2014GB004986. ISSN 0886-6236. S2CID 53459924.