The band model is a conformal model of the hyperbolic plane. The band model employs a portion of the Euclidean plane between two parallel lines.[1] Distance is preserved along one line through the middle of the band. Assuming the band is given by , the metric is given by .
Geodesics include the line along the middle of the band, and any open line segment perpendicular to boundaries of the band connecting the sides of the band. Every end of a geodesic either meets a boundary of the band at a right angle or is asymptotic to the midline; the midline itself is the only geodesic that does not meet a boundary.[2] Lines parallel to the boundaries of the band within the band are hypercycles whose common axis is the line through the middle of the band.
See also
editReferences
edit- ^ Hubbard, John H. "2" (PDF). Teichmüller Theory and Applications to Geometry, Topology, and Dynamics. Ithaca, NY: Matrix Editions. p. 25. ISBN 9780971576629. OCLC 57965863.
- ^ Bowman, Joshua. "612 CLASS LECTURE: HYPERBOLIC GEOMETRY" (PDF). Retrieved August 12, 2018.
External links
edit